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Abstract 33 

The headwater catchment of the Yellow River Basin (HCYRB) controls 35% of the 34 

streamflow of the Yellow River (YR) which faces increasing water shortages. To better 35 

understand streamflow variability in the region we require a better understanding of high and 36 

low flow characteristics. This study presents a new annual (Nov-Oct) streamflow 37 

reconstruction at the Tangnaihai station in the HCYRB for the last two millennia (159-2016 38 

C.E.) using 12 tree-ring chronologies. The nested principal component regression model 39 

combined with the stepwise best subset selection method was proposed to improve the 40 

temporal length and model skill of reconstruction. The stepwise best subset selection method 41 

was presented to select the best principal components subset, instead of a confidence test, 42 

based on k-fold cross-validation error and Akaike’s information criteria (AIC). The model 43 

assessment results verify that the proposed model exhibits strong reconstruction skills. 44 

Besides, the magnitude and duration of both high and low flow periods were analyzed. The 45 

results show that (1) the significant high-flow periods are the early 3rd century, circa 300 46 

C.E., early 13th century, 16th century and circa 1900 C.E., while the low-flow periods are the 47 

late 5th century and late 15th century; (2) the durations and magnitudes of low-flow periods 48 

are longer and larger than high-flow periods and the severities of high-flow periods are 49 

greater than low-flow periods. The reconstruction also suggests that a warm climate is more 50 

likely accompanied by a high-flow period and low-flow periods are more likely to occur in 51 

cold periods associated with the Asian Summer Monsoon and solar activity. 52 

Keyword: annual streamflow reconstruction; stepwise best subset selection method; tree ring; 53 

the Yellow River Basin 54 

 55 

 56 

 57 



 

3 

1 Introduction 58 

The Yellow River (or Huang He) is the second-longest river in China and the sixth-59 

longest river in the world (Huang et al., 2015). With a length of 5464 km and a drainage area 60 

of 795 thousand km2, the river, stretches eastward over 9 provinces through the arid and 61 

semi-arid regions of northern China (Shiau et al., 2007). The Yellow River plays an important 62 

role in many aspects of the country, the 9 provinces along which are responsible for one third 63 

of national grain production of 0.23 billion tons and 25% of national GDP of 24741 billion 64 

yuan in 2019. The utilization of the Yellow River is therefore of key importance for the 65 

sustainable economic and social development of China. 66 

However, the Yellow River basin has suffered serious problems of water shortage and 67 

uneven distribution both temporally and spatially (Wang et al., 2018a). Looking back through 68 

history, the Yellow River basin experienced 1,070 recorded annual droughts from 1766 B.C. 69 

to 1944 C.E. In the past 40 years, severe droughts continually occurred in the upper and 70 

middle reaches, causing a significant reduction in grain production.  The drought in 1980 71 

reduced a grain production of 3.32 million tons. The drought in 1982 destroyed 10 million 72 

mu (670 thousand ha) of cultivated land. The disaster in 1994 reached 60 million mu (4 73 

million ha) and the grain production decreased 6 million tons. The drought in 1997 not only 74 

caused declines of many crops but also led to the drying up of the river for 227 days. Since 75 

2000, droughts even occurred more frequently. For example, from the winter of 2008 to the 76 

spring of 2009, most of the major wheat-producing provinces in northern China suffered from 77 

drought with a drought area of 113 million mu(7.8 million ha). (Wang et al., 2016a) 78 

One of the largest water supply regions in the Yellow River Basin is the headwater 79 

catchment (HCYRB), which refers to the area upstream of the Tangnaihai Station on the main 80 

Yellow River (Zhang et al., 2015). It has a mean elevation of 4000 m and is located in the 81 

northeastern Tibetan Plateau. The catchment covers a drainage area of 121,972 km2, 82 
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accounting for 16% of the total area of the Yellow River Basin, and controls a river section of 83 

1,553 km, accounting for 28.4% of the length of the river(Wang et al., 2018b). The HCYRB 84 

produces 35% of the total streamflow in the Yellow River, so water yield variations in the 85 

basin seriously affect the water supply and economic development in the middle and lower 86 

reaches of the Yellow River(Zhang et al., 2014). An improved understanding of streamflow 87 

variability at HCYRB will, therefore, help to elucidate drought scenarios and efficiently 88 

determine water resources allocation strategies for the whole basin. 89 

The short length of the observed streamflow record at HCYRB limits the 90 

understanding of its time-series characteristics, variability, and trend. Large-scale climate 91 

phenomena, which directly affect local weather and indirectly influence streamflow 92 

variability, often exhibit interdecadal and centennial timescales(Yin et al., 2021). For 93 

example, periodic climate phenomena such as Pacific Decadal Oscillation (PDO), Atlantic 94 

Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO) exhibit one phase 95 

with 20-80 years. Streamflow driven by these climate indices should also exhibit interdecadal 96 

variabilities. However, short streamflow observations only cover one to two phases and 97 

thereby are not well suited to meet the data length requirement to analyze long-term statistic 98 

characteristics and the variability in discharge (Stockton and Jacoby, 1976; Woodhouse and 99 

Lukas, 2006). Therefore, longer records are required not only for a better understanding of 100 

the past high and low flows but also for the interdecadal variability driven by large climate 101 

indices in the long period (Timilsena et al., 2009).  102 

Tree rings have been used to extend the record of streamflow since, in specific 103 

environments, their annual widths may be driven by the same climate as annual streamflow 104 

(Keyimu et al., 2020; Meko et al., 1995). The principal component regression is widely used 105 

in reconstruction based on multiple tree rings, which exhibits optimal model skill compared 106 

with simple regression by transforming the highly correlated tree rings into uncorrelated ones 107 
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(Fritts, 1991; Smith and Stockton, 1981). Some previous studies have already focused on the 108 

streamflow reconstruction of HCYRB using tree rings. Gou et al. (2007) and Gou et al. 109 

(2010) respectively reconstructed the streamflow of Tangnaihai Station for the past 593 years 110 

using principal component regression based on 6 Juniperus Przewalski tree-ring chronologies 111 

and for the past 1234 years using a regression-based on a Juniperus Przewalski tree-ring 112 

chronology. Several severe droughts in the late 15th century and low-flow periods in 1820-113 

1830, 1480-1490 along with a decreasing trend in the modern instrumental period were 114 

recognized in both Gou et al. (2007) and Gou et al. (2010). The existing research laid a good 115 

foundation for the streamflow reconstruction of HCYRB using tree rings. 116 

However, the employed tree rings are few and typically have varying lengths, limiting 117 

the temporal length of reconstructions. A new annual (Nov-Oct) streamflow reconstruction of 118 

HCYRB at Tangnaihai Station is presented, which not only spans a longer time coverage of 119 

nearly two millennia (between 159-2016 C.E.) but also demonstrates improved reconstruction 120 

skill compared to the older reconstructions. To realize this goal, the stepwise best tree-ring 121 

subset selection method is proposed into the nested principal component regression model 122 

and an improved tree-ring network based on a set of 12 tree-ring chronologies, which has 123 

become available recently, were used. The choice of the streamflow season from prior year 124 

Nov to current year Oct considers both the flood/non-flood season of the Yellow River 125 

Conservancy Commission of the Ministry of Water Resources and growing season of tree 126 

rings(Li et al., 2016; Zhang et al., 2019). This long-term extension of streamflow provides 127 

sufficient data to assess interannual and interdecadal variabilities and capture high-flow and 128 

low-flow periods of streamflow at HCYRB in history, which indicate the impacts of climate 129 

change and long-term evolution law including periods. It serves as a useful reference for 130 

long-term streamflow prediction and water resources planning and management in the Yellow 131 

River. The goals of this research include (1) presenting a new annual (Nov-Oct) streamflow 132 
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reconstruction that is longer than the existing ones; (2) analyzing the high-flow and low-flow 133 

variabilities of streamflow at HCYRB in the nearly last two millennia. 134 

2 Study area and data 135 

2.1 The headwater catchment of the Yellow River basin 136 

The HCYRB is located on the northeastern fringe of the Tibetan Plateau in western 137 

China (Gou et al., 2007). The annual temperature and precipitation in this region are affected 138 

by the Asian summer monsoon from the Bay of Bengal. Both temperature and precipitation 139 

increase from May to July varying from – 4 °C to 2 °C and 250 mm to 750 mm respectively 140 

(Zhang et al., 2014). Moreover, there is a significant difference in the spatial distribution of 141 

precipitation at the HCYRB, as the average annual precipitation in the northwest of HCYRB 142 

is only 200 mm, but may exceed 700 mm in the south-eastern part (Zheng et al., 2018).  143 
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 144 

Figure 1 Locations of the Yellow River, Tangnaihai Station and the seven weather 145 

stations 146 

Temperature and precipitation data of seven meteorological stations proximately 147 

located to the HCYRB between 1960 and 2016 were obtained from the National 148 

Meteorological Information Center of China （http://data.cma.cn）. The location network of 149 

the seven meteorological stations is shown in Figure 1. The seasonal distribution of mean 150 

temperature and precipitation of seven meteorological stations are shown in Figure 2 with a 151 

comparison of average monthly cumulative streamflow discharge between 1960 and 2016. 152 

The climatology of streamflow at the Tangnaihai hydrological station is similar to those of 153 

precipitation and temperature. The peak flow season between April-October coincides with 154 
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increased temperature and warmer conditions and conversely, the November-March dry 155 

season is coincident with low precipitation and cool temperatures. 156 

 157 

Figure 2. Monthly precipitation and monthly mean temperature boxplots of seven 158 

meteorological stations between 1960 and 2016 at HCYRB 159 

2.2 The headwater catchment discharge of the Yellow River basin at Tangnaihai Station 160 

The instrumental streamflow data used for reconstructing the discharge of HCYRB 161 

were obtained from the Yellow River Conservancy Commission of the Ministry of Water 162 

Resources (http://www.hydroshare.org/resource/bde8bcf096544ce7b183de784a378c52). The 163 

monthly streamflow record at the Tangnaihai Station, which serves as the outlet of the 164 

headwater catchment of the Yellow River Basin, spans 1956 to 2016 C.E. To increase the 165 

reliability of the reconstruction, the streamflow record of the station was extended to 1920 166 

using instrumental data of Guide Station. It is located 189 km downstream of Tangnaihai 167 

Station, which can be considered to be consistent with Tangnaihai Station before the 168 
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Longyangxia Reservoir was built in 1976. The location network of Tangnaihai Station and 169 

Guide Station in the Yellow River Basin is shown in Figure 1. Therefore, the specific 170 

streamflow records used in this paper were: 171 

(a): unimpaired monthly streamflow of Tangnaihai Station (100°9′E, 35°3′N) 172 

between 1956-2016 173 

 (b): unimpaired monthly streamflow of Guide Station (101°24′E, 36°2′N) 174 

between 1920-1976 175 

The annual streamflows at Tangnaihai Station and Guide Station are shown in Figure 176 

3. There is a significant association between the streamflows of the two stations with a 177 

Pearson correlation of 0.9985 (21 years). Figure 3 demonstrates that the annual streamflow of 178 

Guide Station matches Tangnaihai Station well for the years of overlap before Longyangxia 179 

Station was built (1956-1976).  180 

 181 
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Figure 3 Annual (previous Nov to Oct) streamflow variabilities of Tangnaihai Station 182 

and Guide Station 183 

2.3 Tree-ring chronologies 184 

Considering climate factors are not limited to hydrological basins, all tree-ring 185 

chronologies in or near HCYRB, where may share a similar climate to HCYRB, served as 186 

potentially useful tree-ring candidates to reconstruct discharge at Tangnaihai Station. The raw 187 

ring width data, which had been cross-dated and evaluated using the COFECHA program, 188 

were downloaded from the International Tree-Ring Data Bank (ITRDB) 189 

(https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring) (Ahmed et 190 

al., 2013; Cook et al., 2013; Emile-Geay et al., 2017). 49 tree-ring chronologies were 191 

obtained and the map of the tree-ring networks is shown in Figure 1.  192 

First, standardization of tree rings was conducted to maximize the elimination of the 193 

non-climatic variability, including the non-stationary feature and heteroscedasticity, and 194 

preserving the low-frequency variability in the tree-ring series (Cook, 1985; Fritts, 1976; 195 

Helama et al., 2004). In this study, the raw ring width data for each site were standardized 196 

using the signal-free method in combination with a negative exponential curve or an age-197 

dependent smoothing spline to preserve the maximum amount of common low to medium 198 

frequency variability in the tree-ring data (see detail in Melvin and Briffa (2008)and Melvin 199 

et al. (2007)). The standard chronologies, rather than residual chronologies, were used 200 

because they include autoregressive persistence likely due to climate. 201 

Next, the processes of prescreening and screening of the standard tree-ring 202 

chronologies were carried out to select appropriate tree-ring chronologies as predictors. The 203 

chronologies were first prescreened, such that only series that had an end-year in or later than 204 

2001 was retained. 79 chronologies meet the length requirement considering the one-year lag. 205 
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Then, correlation analysis was implemented to the pre-screened tree rings with the 206 

instrumental annual streamflow over the overlap period (1921-2001) for the screening. The 207 

tree-ring chronologies which were significantly ( =0.05α ) correlated with streamflow were 208 

chosen using a two-sided t-test. Finally, 12 screened tree-ring chronologies were retained for 209 

analysis. The general information is given in Table 1.  210 

Table 1. General information about the selected chronologies 211 

Site 

No. 

Site Name Location(°N, °E) 

Start 

Year 

End 

Year 

Correlation  Lag 

1 HAIYJP (38.57,99.33) 368 2009 0.360 0 

2 DULAJP (36.23,98.17) 159 2011 0.290 0 

3 MQCXJP (35.07,100.35 1249 2001 0.310 0 

4 MQFXJP (34.75,99.68) 1230 2002 0.456 0 

5 YYAHJP (34.78,100.33) 1426 2002 0.450 0 

6 TDCXJP (35.07,100.35) 1130 2002 0.409 1 

7 DLH1 (37.47, 97.23) 843 2001 0.460 0 

8 DLH2 (37.47,97.22) 828 2001 0.383 0 

9 WL2 (37.03,98.67) 845 2001 0.267 0 

10 WL4 (36.68,98.42) 900 2001 0.347 0 

11 WL1 (37.03,98.63) 856 2002 0.347 1 

12 QML (33.8,96.13) 1480 2002 0.440 0 

3 Methods 212 

Nested reconstruction models combining the principal component regression method 213 

and stepwise tree ring subset selection method were utilized to reconstruct annual  (Nov-Oct) 214 
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streamflow at HCYRB based on the selected tree-ring chronologies. The workflow of the 215 

proposed model is shown in Figure 1.  216 

 217 

Figure 4. The workflow of the proposed nested principal component regression model 218 

combined with stepwise best subset selection method and evolution analysis 219 

3.1 Nested principal component regression model 220 

The nested principal component regression model extends streamflows using 221 

principal component regression over nested periods to produce the longest possible 222 

reconstruction from the available tree-ring data. The nested periods, which are separated by 223 

the start years of tree-ring chronologies, exhibit a multiple span structure with increasing start 224 

years and a common end year as (a) in Figure 4. Every nest requires vectors of the same 225 

length, but that the tree-ring predictors are all different lengths depending on how old the 226 

trees were. Because of this, nests have to be divided whenever the shortest chronology is 227 

dropped out of the dataset. To that end, we defined the difference between the start years of 228 

two spans of at least 30 years to avoid a large number of nests. In the nested model, the more 229 
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recent nest of the reconstruction is usually more reliable than the earlier one because more 230 

tree-ring chronologies are involved (Meko et al., 2001). Therefore, the full nested 231 

reconstruction is then created by appending each subset-reconstruction extension back in time 232 

to the beginning of pre-existing shorter reconstruction (Cook et al., 2013).  233 

Each reconstruction model extends streamflow using the principal component 234 

regression (PCR) approach based on the selected combination of tree-ring chronologies. In 235 

PCR, the principal component analysis was used first to transform the original predictors into 236 

a new set of independent principal components (PCs) by applying singular value 237 

decomposition to the covariance matrix of the selected chronologies (Meko et al., 2007). The 238 

PCs used in reconstruction were selected using stepwise best subset selection. Then, the log-239 

linear regression function was utilized secondly to reconstruct streamflow based on the 240 

selected PC. The log-linear regression is capable of transforming the positively skewed 241 

streamflow data to a distribution that is closer to that of the chronologies (Margolis et al., 242 

2011).  243 

Before the PCR in each nest, the appropriate normalization is done to the ensemble of 244 

tree-ring chronologies with the mean and standard deviation of the calibration period. The 245 

normalization can be defined as 246 

 *
= i c

i

c

x u
x

σ
−  (1) 247 

where 
ix is the original single tree-ring chronology; 

*

i
x  is the normalized single tree-ring 248 

chronology; 
cu  and 

cσ respectively represent the calibration period mean and standard 249 

deviation of original tree-ring chronologies. 250 
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After the PCR in each nest, the standard deviation of reconstructed streamflow in 251 

every nest is rescaled to observed records of the calibration period to recover lost variance. 252 

Rescaling can be defined as 253 

 ,*

, =
i j j

i j j

j

Q u
Q uσ

σ
 −

+  
 

 (2) 254 

where ,i jQ and 
*

,i j
Q  respectively denote the original and rescaled reconstructed streamflow in 255 

the nest j; ju  and jσ respectively represent the calibration period mean and standard 256 

deviation of the original reconstructed streamflow in the nest j; σ  is the standard deviation of 257 

instrumental streamflow. 258 

These procedures are capable of avoiding the artificial variability in the extension 259 

using reconstructions in latter nests due to variance differences in regressions of different 260 

nests (Cook et al., 1994). The recovery of lost variance due to regression also provides for 261 

less biased comparisons of current with past, at the expense of increased uncertainty bounds 262 

in the reconstruction (Ammann et al., 2010). 263 

3.2 The stepwise best subset selection method 264 

The traditional significance test does not guarantee a great or stable model skill. The 265 

forward best subset selection method was implemented to choose the best principal 266 

component subset before the regression in each nest using the data of the calibration period. 267 

The method first selects different best models in different dimensions (the number of selected 268 

principal components) using k-fold cross-validation. Then the best principal component 269 

subset is selected among the different best models by calculating their Akaike’s information 270 

criteria (AIC) values to avoid over-fitting. The subset with the lowest value was selected for 271 

both cross-validation error and AIC. The idea behind the best subset selection method is to 272 

select the principal component group with the lowest AIC instead of the traditional 273 
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significance test. The k-fold cross-validation error in the best subset selection method is 274 

calculated as 275 

 
1

1
CV =

k

k k

i

RSS
k =
∑  (3) 276 

where 
kRSS  is the residual sum of squares of the k-fold data. Here the 5-fold cross-validation 277 

was used. 278 

The common calculation of the AIC algorithm is given by Schwarz (1978). For the 279 

linear regression with normal errors, AIC can be expressed as (Burnham and Anderson, 280 

2004): 281 

 ( )IC l o g / 2A n R SS n V+=  (4) 282 

where RSS is the residual sum of squares of the whole training data; V  is the total number of 283 

parameters in the regression. 284 

To simplify the process to avoid testing all possible combinations, the best subset was 285 

found by a stepwise procedure from the low dimension to high dimension: AIC was 286 

calculated after the subset selection in every dimension. The steps were driven by 287 

continuously increasing the dimension until the minimum AIC for the higher dimension was 288 

larger than the AIC of the previous one. The previous best subset in the lower dimension was 289 

selected as the final best subset. Though the selected principal component combination may 290 

not ensure the global optimum among all possibilities, it gives a more parsimonious model 291 

since it performs better than the model using all the variables (Hidalgo et al., 2000). 292 

3.3 Streamflow reconstruction performance indicators 293 

The observed streamflow records are partitioned into a model calibration period 294 

(1943-2002) and a validation period (1921-1942) to assess model performance. The 295 

parameters and optimal tree-ring subset are estimated and selected over the calibration 296 
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period, while the model skill is assessed over the years of validation which gives a less biased 297 

performance estimate (Michaelsen, 1987).  298 

To assess the skill of the nested reconstruction models, a set of calibration and 299 

validation statistics is implemented for every subset model. The widely-used performance 300 

indicators include calibration period coefficient of multiple determination ( CRSQ ), validation 301 

period square of the Pearson correlation coefficient (VRSQ ), validation period reduction of 302 

error (RE), validation period coefficient of efficiency (CE), which work to detect the 303 

difference between the observed and reconstructed streamflow (Cook et al., 2013; Gaire et 304 

al., 2017; Rao et al., 2018). When they are positive, the estimated data contains more useful 305 

information than the mean value in the corresponding period, and vice versa (Devineni et al., 306 

2013). Besides, they are proportional to the skill, which means the higher values the indicator 307 

values exhibit, the more accurate the estimated data is, and thereby the better performance the 308 

model shows.  309 

3.4 High and low flow elucidation 310 

High flow periods were identified as the year when the cumulative streamflow at least 311 

two years is the above 33rd percentiles of long-term streamflow, while low flow periods were 312 

identified as the year when the cumulative streamflow at least two years is the below 67th 313 

percentiles of long-term streamflow. To detect the temporal characters, the high (low) flow 314 

periods were analyzed in terms of the magnitude (total excess/deficit), the duration (years) 315 

and severity, and the frequency (see the detail in Timilsena et al. (2007)). 316 

4 Results 317 

In this section, the model assessment results are shown first. Then the reconstructed 318 

streamflow series is presented with anomalies and its statistical characteristics analyzed every 319 

ten decades. Finally, we explore the historical high and low flow periods and the 320 
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teleconnection between the streamflow and large climate indices in HCYRB to provide 321 

information to streamflow prediction and long-term optimal operation of over-year regulation 322 

reservoirs, based on the reconstructed streamflow.  323 

4.1 Model assessment 324 

8 nested periods were divided according to the start years of the 12 tree-ring 325 

chronologies. The final reconstructed streamflow series was produced by extending the 326 

nested reconstructions. The 5-fold cross-validation errors and AIC values of the best subsets 327 

in different nests are also shown in table 2. 328 

Table 2. Calibration/validation results of nested models. NTR is the number of tree-ring 329 

chronologies, while NPC is the number of selected PCs. 330 

Nest NTR NPC Start Year 

CV of the best 

subset 

AIC of the best 

subset 

1 12 4 1480 17172.31 430.48 

2 11 4 1385 16974.52 429.78 

3 10 3 1249 18537.18 431.38 

4 8 2 1130 22979.57 440.78 

5 7 2 900 23425.70 443.89 

6 6 2 857 23344.18 443.58 

7 2 1 368 27412.72 450.83 

8 1 1 159 26671.75331 450.70 

Figure 5 shows the model skill assessment results including the AIC value. The values 331 

of CRSQ , VRSQ , CE and RE for almost all nests are positive, which are up to 0.37, 0.62, 0.57 332 

and 0.69 respectively of the latest nest. Only the earliest nest of 159~368 C.E. shows poor 333 

performance in terms of CE, but all the other indicators give evidence of performance better 334 
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than average. Consequently, the results indicate the higher accuracy of the reconstruction 335 

than the corresponding climatology on both the calibration period and validation period. 336 

Additionally, all of the CRSQ , VRSQ , CE, and RE variation lines of the proposed model are 337 

higher than the ones of the principal component regression method and the AIC line is lower, 338 

which give strong evidence of the more optimal model skill of the proposed model than he 339 

principal component regression method.  340 

 341 

 342 

Figure 5. Line graph of the variability of AIC, CRSQ , VRSQ , CE, and RE values for nests as 343 

the number of predictors increases 344 

Figure 6 shows the reconstructed streamflow and instrumental streamflow during the 345 

test period. Although the reconstructed series is lower than the instrumental record on most 346 

individual years, it estimates low flows, long-term trends and evolution feature well.  347 

 348 
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 349 

Figure 6. The instrumental streamflow series and the reconstructed streamflow series during 350 

the overlap time of 1921-2002. The dotted line divides the calibration period and the 351 

validation period. 352 

4.2 HCYRB streamflow reconstruction and evolution analysis 353 

The annual streamflow of HCYRB at Tangnaihai Station was reconstructed back to 354 

159 C.E. The evolution characteristics of the streamflow were analyzed with statistical 355 

parameters as shown in Table 3. The results show that (1) the means of streamflow during 356 

1400-1499 C.E., 700-799 C.E. are lower than 17 billion m3; while the means of streamflow 357 

during 1500-1599 C.E and 500-599 C.E are respectively up to 21.13 billion m3and 21.06 358 

billion m3; (2) the median values are usually smaller than mean values except for 1500-1599 359 

C.E., 1400-1499 C.E.,  1200-1299 C.E., 1000-1099 C.E., 700-799 C.E. and 159-199 C.E.; (3) 360 

the standard deviation of streamflow usually varies from 3 to 5 billion m3 except 159-299 361 

C.E., which is up to 5.34 billion m3. 362 

Table 3. The evolution characteristics of the annual streamflow of HCYRB.  363 

Streamflow series 

Mean  

(108 m3) 

Median  

(108 m3) 

Std. Dev.  

(108 m3) 

Instrumental series 1921-2016 C.E. 197.68 189.54 47.78 

Reconstructed 

series 

1800-1920 C.E. 193.56 193.36 45.77 

1700-1799 C.E. 174.45 170.67 44.96 

1600-1699 C.E. 187.69 183.15 48.61 
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Streamflow series 

Mean  

(108 m3) 

Median  

(108 m3) 

Std. Dev.  

(108 m3) 

1500-1599 C.E. 211.32 216.79 43.78 

1400-1499 C.E. 152.60 153.09 36.98 

1300-1399 C.E. 201.95 201.54 46.47 

1200-1299 C.E. 204.99 208.04 44.54 

1100-1199 C.E. 175.73 172.06 49.99 

1000-1099 C.E. 190.79 198.75 37.64 

900-999 C.E. 186.70 185.07 46.74 

800-899 C.E. 182.31 177.34 36.36 

700-799 C.E. 164.43 165.56 36.92 

600-699 C.E. 178.66 173.64 34.42 

500-599 C.E. 210.63 208.21 36.09 

400-499 C.E. 180.51 175.74 39.77 

300-399 C.E. 202.32 203.30 48.58 

200-299 C.E. 192.37 187.99 53.43 

159-199 C.E. 201.40 204.63 51.52 

Figure 7 shows the reconstructed streamflow time series (159-1920 C.E.) adjoined 364 

with the instrumental streamflow time series (1921-2016 C.E.). The reconstruction results 365 

show that (1) the maximum annual streamflow is 33.08 billion m3 in 198 C.E., while the 366 

minimum one is 6.50 billion m3 in 908 C.E.; (2) the annual streamflow exhibits a skewed 367 

distribution of more dry years and fewer rainy years in a period.368 
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 369 

Figure 7. The adjoined streamflow of reconstruction and observation (grey line) at Tangnaihai Station over the time of 159 C.E. to 2016 C.E. 370 

along with the 5-year-moving average (yellow line), 11-year-moving average (green line). Blue vertical lines represent anomalies of high flow 371 

and red vertical lines represent anomalies of low flow. 372 
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4.3 Variability of high-flow and low-flow periods at HCYRB 373 

The variability of high and flow periods in the last nearly two millennia is shown in 374 

Figure 8. The high flow periods are illustrated with blue vertical bars and low ones are 375 

illustrated with red vertical bars in the figure. The significant high and flow periods were 376 

highlighted in yellow and purple circles respectively which were discussed in next section. 377 

The low flow period divider of the 67th percentile of long-term streamflow is 16.563 billion 378 

m3 and the high flow period divider of the 33rd percentile is 20.84 billion m3. 379 

As Figure 8 shows, 131 high flow periods incurred in the last nearly two millennia. 380 

During the last nearly two millennia (159-2016 C.E.), the high flow with the largest 381 

magnitude of 61.22 billion m3 incurred between 293 C.E. and 307 C.E.; the longest high flow 382 

happened during 1569 C.E, and 1579 C.E. with a duration of 16 years; the most severe high 383 

flow happened during 1975 C.E. to 1976 C.E. with the severity of 8.23 billion m3/year. In 384 

terms of duration, HCYRB incurred the 15- year high-flow period during 293-307 C.E., the 385 

11-year high-flow period during 602-612 C.E and 1896-1906 C.E.., the 10- year high-flow 386 

period during 318-327 C.E., besides the 16-year one. In terms of severity, HCYRB incurred 387 

severe high-flow periods in 9196-201 C.E. (6.61 billion m3/year), 230-236 C.E. (8.04 billion 388 

m3/year), 888-889 C.E. (6.47 billion m3/year), 1320-1322 C.E. (7.09 billion m3/year) besides 389 

the most severe one. 390 

Figure 8 shows that 136 low flow periods happened in the last nearly two millennia. 391 

During the last nearly two millennia (159-2016 C.E.), the low flow with the largest 392 

magnitude of 81.49 billion m3
 incurred between 1464 C.E. and 1485 C.E.; the longest low 393 

flow with a duration of 22 years incurred during 1464-1485 C.E and 1464-1485 C.E.; the 394 

most severe low flow happened during 1748 C.E. to 1749 C.E. with the severity of 8.04 395 

billion m3/year. In terms of duration, HCYRB incurred long low-flow periods during 903-914 396 
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C.E.(12 years), 1446-1459 C.E.(14 years), 1697-1707 C.E.(11 years) and 1709-1719 C.E.(11 397 

years), besides the 22-year one. In terms of severity, HCYRB incurred severe low flows in 398 

91368-1369 C.E. (6.76 billion m3/year), 1648-1649 C.E. (6.73 billion m3/year), 1775-1776 399 

C.E. (5.61 billion m3/year) besides the most severe one. 400 

In general, the durations and magnitudes of low-flow periods are longer and larger 401 

than high-flow periods and the severities of high-flow periods are greater than low-flow 402 

periods. The most severe low flow is 0.19 billion m3/year less than the most severe high flow, 403 

while the longest low-flow period is 6 years longer than the longest high-flow period and the 404 

magnitude of the largest low flow is 20.27 billion m3 larger than that of the largest high flow  405 

The most severe 3 high-flow periods exhibited severities greater than 7.0 billion m3/year, 406 

while only the most severe low-flow period exhibited severities greater than the value.  407 
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 408 

Figure 8. The magnitude and duration of low-flow periods (red vertical bar) and high-flow periods (blue vertical bar) over the period of 159 409 

C.E. to 2016 C.E (The significant high-flow and low-flow periods were marked with yellow and purple circles respectively) 410 



 

 

5 Discussion 411 

A tree-ring-based reconstruction of annual streamflow for the past 1858 years, which is 412 

much longer than existing reconstruction, was developed for the headwater catchment of the 413 

Yellow River basin. The significant high-flow periods of the basin during the last two millennia 414 

are the early 3rd century, circa 300 C.E., early 13th century, 16th century and circa 1900 C.E. as 415 

the yellow circles show in Figure 8. The periods of the early 3rd century, circa 300 C.E., early 416 

13th century and circa 1900 C.E correspond to the Roman Warm Period (the 1st century B.C. to 417 

the mid-4th century C.E), Medieval Warm Period (the mid-10th century to the end of the 13th 418 

century C.E) and Warming Period in the 20th century(Ge et al., 2013; Lamb, 1965). The high 419 

flow circa 1900 C.E also coincides with heavy precipitation in this period under a warm climate 420 

(Yang et al., 2014). Previous studies give the interpretation of a dominant moisture control on 421 

tree growth in this region and the monsoon precipitation is the main driven factor of the 422 

streamflow (Li et al., 2008; Qin et al., 2013; Yang et al., 2013). The phenomenon is likely caused 423 

by the increasing solar radiation in the Medieval Warm Period and Warming Period (Song et al., 424 

2016; Yan Mi et al., 2014). The purple circles in Figure 8 show that the most significant low-425 

flow periods of the basin during the last two millennia are the late 5th century and late 15th 426 

century, which corresponds to the Dark Age Cold Period (the end of the 4th century to the early 427 

of 10th century C.E) and Little Ice Age Period (the 15th to 19th century). The late-15th-century low 428 

flow coincides with historical archives of droughts in Beijing, Shandong, Shanxi, Henan, and 429 

Shannxi and is widely proved by the existing reconstructions by Wang et al. (2016b), Gou et al. 430 

(2007) and Gou et al. (2010). Existing research gives evidence that the low-flow period of the 431 

late 15th century in the headwater catchment of the Yellow River basin should be due to 432 

precipitation decrease caused by weak solar activity, which resulted in a thermal contrast 433 



 

 

between sea and land and weakened monsoons (Eddy, 1976; Gou et al., 2010). The 434 

reconstruction suggests that a warm climate is more likely accompanied by a high-flow period 435 

and low-flow periods are more likely to happen in cold periods associated with the Asian 436 

Summer Monsoon and solar activity (Han et al., 2019; Zheng et al., 2014).  437 

6 Conclusion 438 

This study presents a new annual (Nov-Oct) streamflow reconstruction at HCYRB back 439 

to 159 C.E. using 12 standard tree-ring chronologies. The new streamflow series was 440 

reconstructed in water year same with the cascade reservoir operation and provides useful 441 

information for water resources management of the basin. The nested reconstruction models with 442 

a combination of the nested principal component regression approach and the stepwise best tree-443 

ring subset selection method were proposed. The results of the model assessment verify that the 444 

proposed model is capable of reconstructing annual streamflow accurately with strong model 445 

skills in terms of AIC, CRSQ , VRSQ , CE, and RE.  446 

The high and low flow periods during the last two millennia were analyzed in terms of 447 

the magnitude, severity, and duration to further explore the history streamflow variation.  In 448 

general, the significant high-flow periods are the early 3rd century (230-236 C.E.), circa 300 C.E. 449 

(293-307 C.E.), early 13th century (1227-1234 C.E. and 1243-1250C.E.), 16th century (1502-450 

1510 C.E. and 1564-1579 C.E.) and circa 1900 C.E. (1896-1906 C.E.), while the low-flow 451 

periods are the late 5th century (472-493 C.E.) and late 15th century (1446-1459 C.E. and 1464-452 

1485 C.E.). The reconstruction suggests that a warm climate is more likely accompanied by a 453 

high-flow period and low-flow periods are more likely to occur in cold periods associated with 454 

the Asian Summer Monsoon and solar activity. 455 



 

 

The new approach can be applied to other areas, which improves the reconstruction 456 

accuracy and enriches the model library. The new reconstruction extends streamflow data of 457 

HCYRB from just 100 years of observations to 1,858 years including 131 high flow periods and 458 

136 low flow periods, which provides adequate data foundation to analyze periodic variation and 459 

succession characteristics of streamflow. The analyses of significant high-flow and low-flow 460 

periods show the historical condition and give evidence of the mechanisms by which climate 461 

drives streamflow. Consequently, the results give further information to streamflow prediction of 462 

HCYRB and long-term optimal operation of Longyangxia over-year regulation reservoir.  463 
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